
Neurocomputing 281 (2018) 27–36 

Contents lists available at ScienceDirect 

Neurocomputing 

journal homepage: www.elsevier.com/locate/neucom 

Distributed and asynchronous Stochastic Gradient Descent with 

variance reduction 

Yuewei Ming 

a , Yawei Zhao 

a , Chengkun Wu 

a , Kuan Li a , Jianping Yin 

b , ∗

a College of Computer, National University of Defense Technology, Changsha 410073, China 
b Dongguan University of Technology, Dongguan 523808, China 

a r t i c l e i n f o 

Article history: 

Received 28 September 2016 

Revised 9 October 2017 

Accepted 19 November 2017 

Available online 2 December 2017 

Communicated by Prof. Sanguineti Marcello 

Keywords: 

Stochastic Gradient Descent 

Variance reduction 

Asynchronous communication protocol 

Distributed machine learning algorithms 

a b s t r a c t 

Stochastic Gradient Descent (SGD) with variance reduction techniques has been proved powerful to train 

the parameters of various machine learning models. However, it cannot support the distributed systems 

trivially due to the intrinsic design. Although conventional studies such as PetuumSGD perform well for 

distributed machine learning tasks, they mainly focus on the optimization of the communication protocol, 

which does not exploit the potential benefits of a specific machine learning algorithm. In this paper, we 

analyze the asynchronous communication protocol in PetuumSGD, and propose a distributed version of 

variance reduced SGD named DisSVRG. DisSVRG adopts the variance reduction technique to update the 

parameters in a model. After that, those newly learned parameters across nodes are shared by using the 

asynchronous communication protocol. Besides, we accelerate DisSVRG by using the adaptive learning 

rate with an acceleration factor. Additionally, an adaptive sampling strategy is proposed in DisSVRG. The 

proposed methods greatly reduce the wait time during the iterations, and accelerate the convergence of 

DisSVRG significantly. Extensive empirical studies verify that DisSVRG converges faster than the state-of- 

the-art variants of SGD, and gains almost linear speedup in a cluster. 

© 2017 Elsevier B.V. All rights reserved. 

1

 

[  

t  

u  

c  

e  

w  

i  

t  

v  

a  

s  

t  

fi  

s

 

t

m  

H  

r  

ω  

n  

o  

u  

p  

t  

m  

R  

t  

h

0

. Introduction 

Machine learning based applications such as image recognition

1] , speech recognition [2] and text processing [3] proliferate in

he era of Big Data. Those underlying machine learning models are

sually complex and big with a large number of parameters which

an be trained or learned from a large amount of training data. For

xample, it is possible to train a large scale deep neural network

hich consists of millions or even billions of parameters by feeding

t with terabytes of training data. Furthermore, it is worth noting

hat most of the machine learning algorithms are iteratively con-

ergent, which means those algorithms need many rounds of iter-

tive calculations to update the parameters of their models. Con-

idering the complexity of the underlying model, the huge size of

he training data and the massive amount of computation, an ef-

cient training method is vitally important for performing a large

cale machine learning task. 
∗ Corresponding author. Tel.: +86 15207490365 

E-mail address: jpyin@dgut.edu.cn (J. Yin). 

i  

i  

t

 

r  

v  

g  

d  

ttps://doi.org/10.1016/j.neucom.2017.11.044 

925-2312/© 2017 Elsevier B.V. All rights reserved. 
Many machine learning algorithms can be described by the op-

imization problem like (1) , 

in 

ω 
f (ω) , f (ω ) = 

1 

n 

n ∑ 

i =1 

f i (ω ) + R (ω) . (1)

ere, f ( ω) is generally called the loss function. f i ( ω) with 1 ≤ i ≤ n

epresents the objective loss corresponding to the i th instances.

 represents the parameters of a model, that is, the parameters

eeded to be updated during the iterations. n means the size

f training data. R ( ω) represents the regularization item which is

sed to avoid overfitting. The regularization item represents the

rior knowledge about the problem. For example, when we want

o obtain a sparse solution, that is, the optimal parameters contain

any zeros, R ( ω) is usually formulated as the L 1 norm, namely,

 (ω) = ‖ ω‖ 1 . Besides, ridge regression modes use the L 2 norm as

he regularization item, that is, R (ω) = ‖ ω‖ 2 . Some other regular-

zations can be used in the optimization objective [4–6] , but it

s out of the scope of the paper. We recommend readers to read

hose references for more details. 

The loss function f ( ω) can be minimized by updating the pa-

ameters iteratively, which is called the learning process. Con-

entionally, the gradient descent method is used to compute the

lobal average gradient, i.e., ∇ f (ω t−1 ) , and then uses it to up-

ate the parameters during an iteration. Here, t represents the

https://doi.org/10.1016/j.neucom.2017.11.044
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2017.11.044&domain=pdf
mailto:jpyin@dgut.edu.cn
https://doi.org/10.1016/j.neucom.2017.11.044


28 Y. Ming et al. / Neurocomputing 281 (2018) 27–36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f  

c  

g  

t  

r  

t  

j  

w  

f  

t  

t  

n  

m  

fi  

a

 

l  

o  

S  

c  

v  

S

2

 

b  

p  

t  

a  

p  

a  

a  

t  

r  

i  

g  

m  

a  

i  

a  

p  

o  

t  

l  

g  

a  

p  

r  

e  

S  

l  

d  

b  

D  

i  

t  

e  

p  

c  

b

 

w  

i  

T  

A  
t th iteration. Since ∇ f (ω t−1 ) needs n derivations, which are time-

consuming, the gradient descent method is not practical for a large

scale machine learning task . An alternative approach is Stochastic

Gradient Descent (SGD) and its variants. SGD randomly samples an

instance from the training data, and then use it to compute the

local gradient, i.e., ∇ f i (ω t−1 ) , instead of the global average gradi-

ent. The parameters are thus updated by using the local gradient.

Since ∇ f i (ω t−1 ) merely needs one derivation for the local gradi-

ent during an iteration, it is efficient for the large scale machine

learning tasks. However, the variance exists between the local gra-

dient ∇ f i (ω t−1 ) and the global average gradient ∇ f (ω t−1 ) , which

is denoted by the stochastic noise in the paper equivalently. The

variance slows the convergence of the loss function i.e., f ( ω), for

a machine learning algorithm. Specifically, when the parameters

are close to the optimum, it is difficult to decrease the loss func-

tion due to the variance. Conventionally, the variance is reduced

by using a decaying learning rate to update the parameters. That

is, the value of the learning rate is decreased when the iteration

proceeds. Although the variance can be reduced by the decaying

learning rate, the small learning rate unavoidably impairs the con-

vergence performance. 

Recently, the SGD and its variants have been widely used to

train the parameters of a model in distributed memory systems

[7–9] . Those versions of SGD generally train and update param-

eters in a parameter server system by using a cluster. The nodes

in the parameter server system are categorized into servers and

workers. First the workers pull the parameters from the servers,

Second, the underlying calculations of the gradients are conducted

by workers. Those updates will be then pushed to servers, and

be aggregated on servers for updating the global parameters.

Finally, those newly learned global parameters will be shared

with workers. Since there exists much communication between

workers and servers, almost all the distributed versions of SGD

like PetuumSGD focus on the optimization of communication [9] .

In specific, PetuumSGD has proposed the asynchronous commu-

nication protocol denoted by Staleness Synchronous Protocol (SSP)

to conduct communication across nodes. Since SSP is designed for

the general iteratively convergent machine learning algorithms,

it does not exploit the potential benefits of SGD to accelerate

the iterative calculations. For example, PetuumSGD updates the

parameters by using a decaying learning rate. The learning rate

in PetuumSGD in the current iteration denoted by η will become

0.95 η in the next iteration. When the parameters are close to

the optimum, the loss function is difficult to be decreased due

to the extremely small learning rate. In a nutshell, even though

PetuumSGD adopts SSP to optimize the communication between

workers and servers, the decay learning rate slows its convergence.

Meanwhile, a new technique of the variance reduction is pro-

posed to speed up the convergence of SGD [10–12] . Such variance

reduction technique reduces the variance of SGD, and keeps SGD

converging at a constant rate. However, those versions of SGD are

designed to be used in one node instead of a cluster. When the

amount of parameters or the size of training data is extremely

huge so that they cannot be stored in a node, the underlying

variance reduction technique will not work. For instance, a deep

network may have billions or even trillions of parameters, which

cannot be stored in a node. Therefore, such versions of SGD are in-

capable of performing the train of the parameters for a large scale

machine learning task, or handling a large amount of training data.

In this paper, we design a distributed and asynchronous ver-

sion of variance reduced SGD denoted by DisSVRG for large scale

machine learning tasks. It is worth noting that DisSVRG adopts the

asynchronous communication protocol, i.e., Staleness Synchronous

Protocol (SSP). In order to obtain a fast convergence, DisSVRG is ac-

celerated by using a learning rate with an acceleration factor. It is

unavoidable that the fast workers will spend much time on waiting
or the slow workers when performing iterative calculations in a

luster, which is also known as the “straggler problem”. The strag-

ler problem wastes much time for the fast workers, thus leads to

he slow convergence of a machine learning algorithm. In order to

educe the wait time, we propose an adaptive sampling strategy

o alleviate the straggler problem. Specifically, we dynamically ad-

ust the random sampling strategy during the iterations. When the

orker is faster than other workers, it will sample more instances

or the next iteration, which will take the faster worker more time

o compute the local gradient. Thus, the slow workers have chance

o catch up with the faster works, and the wait time is reduced sig-

ificantly. Finally, we conduct empirical studies on a High Perfor-

ance Computing (HPC) cluster. The performance evaluation veri-

es that DisSVRG outperforms the state-of-the-art version of SGD,

nd obtains approximately linear speedup in the cluster. 

The rest of this paper is organized as follows. Section 2 out-

ines the related work. Section 3 presents the preliminaries

f our method. Section 4 illustrates the details of DisSVRG.

ection 5 highlights the optimization of DisSVRG. Section 6 dis-

usses the major difference between our work and the pre-

ious studies. Section 7 shows the performance evaluation.

ection 8 concludes the paper. 

. Related work 

With the proliferation of data, a complex and big model can

e learned by feeding it with a huge size of training data. An ap-

roach for such a large scale learning is to use a cluster to train

he parameters of the underlying model [7–9] . Dean et al. propose

 version of asynchronous and distributed SGD denoted by Down-

ourSGD in a parameter server system. DownpourSGD uses fully

synchronous communication protocol to conduct communication

cross nodes, which cannot guarantee the convergence. To increase

he robustness of DownpourSGD, the Adagrad adaptive learning

ate procedure is adopted [13] . However, the adopted learning rate

s decayed with the iterations, and thus leads to the slow conver-

ence. Besides, Li et al. and Xing et al. have proposed an imple-

entation of the parameter server system, respectively. The similar

synchronous communication protocol denoted by SSP is adopted

n both of their systems to share the updates of the parameters

cross nodes. SSP has been proved powerful in both theory and

ractice. However, SGD in [8] uses a constant learning rate with-

ut variance reduction technique, leading to slow convergence due

o the variance. SGD in [9] , i.e., PetuumSGD, adopts a decaying

earning rate to reduce the variance, giving rise to slow conver-

ence when the learning rate becomes small. Our version of the

synchronous and distributed SGD, i.e., DisSVRG, adopts SSP to im-

lement the communication across nodes, and uses the variance

eduction technique to reduce variance as well. Recently, Zhang

t al. have proposed a new distributed variant of SGD denoted by

SGD in the paper [14] . SSGD is designed by combining the de-

ayed proximal gradient and the stochastic variance reduced gra-

ient. Although SSGD outperforms other previous variants of SGD

ecause of the variance reduction technique, our proposed method

isSVRG has an advantage of the convergence performance over

t. Additionally, there are some other impressive researches about

he distributed machine learning in a cluster. For example, Aaron

t al. focus on the straggler problem in the distributed settings, and

ropose FlexRR to solve the problem for iteratively convergent ma-

hine learning algorithms [15] . Li et al. propose an efficient mini-

atch training mechanism to accelerate SGD in a cluster [16] . 

The variance reduced SGD denoted by SVRG is adopted in [10] ,

hich is effective to reduce the variance of SGD. However, SVRG

s a serial version, and designed to be run on a single node.

hus, it is not suitable for a large scale machine learning task.

synchronous and parallel versions of SVRG partially solve this



Y. Ming et al. / Neurocomputing 281 (2018) 27–36 29 

Table 1 

The highlighted notations. 

Symbols Notations 

ω The global parameters 

i t The index of an instance picked at the t th iteration randomly 

∇ f i t The stochastic gradient 

∇ ̃

 f i t The noise reducer 

∇ ̃

 f The stale full gradient 

νt The variance reduced gradient 

e p The number of epochs in the worker p 

τ The delay bound 

σ The acceleration factor 

δ Used in the adaptive sampling strategy 

η The learning rate 

‖ · ‖ The 2-norm defautly 

x i , y i The i th instance and its label 

p  

m  

i  

a  

i  

b  

O  

m  

m  

w  

t  

S  

r  

w  

t

3

 

b  

a

3

 

a

3

 

i  

c  

b  

f

ω

H  

t  

t  

s  

�  

p  

d  

T

ω  

w  

i  

g  

s  

p  

t  

s  

a  

d  

s  

C  

l

3

 

r  

T

H  

t  

s  

F  

d  

v  

v  

v  

g  

l

T  

f  

t  

e  

t  

i  

s  

p  

v

4

 

t

4

 

p  

e  

a  

d  

g  

w  

t  

e  

i  

w  

t  

a  

W  

p  

t  
roblem [11,12,17–19] . Such SVRG versions use the lock-free

ethod to update the parameters in parallel for multiple learn-

ng threads in a node. However, the design of such work targets

t a multicore system on a single node. When the size of train-

ng data or the number of parameters is huge so that they cannot

e stored in one node, SVRG and those variants fail immediately.

ur proposed variance reduced SGD is designed for the large scale

achine learning tasks in a cluster. We can partition the data into

ultiple blocks, and allocate them to multiple worker machines,

hich is suitable to accelerate SGD in a cluster. More recently,

here are many new variants of the variance reduced SGD such as

AGA [20] , S2GD [21] , SVRG++ [22] , Prox-SVRG [23] . Those great

esearches have proposed advanced variance reduction techniques,

hich can be used to improve our method. However, it is out of

he scope of the paper, and we leave it as the future work. 

. Preliminaries 

In this section, we present the preliminaries including the sym-

ols and their notations, the parameter server system and the vari-

nce reduced SGD. 

.1. Symbols and notations 

As illustrated in Table 1 , the main symbols used in the paper

nd their notations have been organized into a table. 

.2. Parameter server 

In data-parallel machine learning, the data set D is partitioned

nto P blocks. The blocks of data are assigned to the worker ma-

hines which are indexed by p = 1 , . . . , P . We denote the p th data

lock by D p . The data parallelism updates the model parameters as

ollows: 

 

s = G 

( 

ω 

s −1 , 

P ∑ 

p=1 

�(ω 

s −1 , D p ) 

) 

. (2) 

ere, �( ·) means the update of the parameters which is ob-

ained according to the data partition D p on a worker. In specific,

he worker needs to pull the initial parameters from the model

erver. After that, it computes the update of the parameters, i.e.

(ω 

s −1 , D p ) . G ( · ) represents the aggregation of the updates of the

arameters on a server. Specifically, the server collects all the up-

ates from the workers, and then conduct the aggregation [24,25] .

aking SGD as an example, the update rule can be 

 

s = ω 

s −1 + 

P ∑ 

p=1 

�(ω 

s −1 , D p ) , (3)
here G ( · ) is initialized as an additive operation, and �(ω 

s −1 , D p )

s usually initialized as the product of the learning rate η and the

radient according to the data partition D p . As shown in Fig. 1 ,

ervers and workers interact via a bipartite topology. The model

arameters ω can be divided and stored on multiple servers and

hus not limited by a single machine’s memory in a parameter

erver system. Every worker pulls the parameters from the server,

nd then obtain the update of the parameters. Finally, those up-

ates are pushed to the servers, and are aggregated on those

ervers. The servers can collaborate with the workers to utilize

PUs on all machines when we conduct a large scale machine

earning task [24,26] . 

.3. Variance reduced SGD 

The variance reduced SGD uses a variance reduced gradient to

educe the stochastic noise during the update of the parameter.

he variance reduced gradient is formulated as 

νt = ∇ f i t − ∇ ̃

 f i t + ∇ ̃

 f . (4) 

ere, i t represents the index of an instance which is picked at the

 th iteration. ∇ f i t represents the stochastic gradient, ∇ ̃

 f i t repre-

ents the noise reducer, and ∇ ̃

 f represents the stale full gradient.

irst, ∇ f i t usually leads to much stochastic noise because of it is

ifferent from the full gradient. The stochastic noise is denoted by

ariance in the paper. Compared to the gradient descent, the con-

ergence of the SGD is a victim of the variance, and usually con-

erges slowly. To overcome the weakness of the SGD, the variance

radient uses ∇ ̃

 f i t and ∇ ̃

 f to reduce the variance due to the fol-

owing property: 

E νt = E (∇ f i t − ∇ ̃

 f i t + ∇ ̃

 f ) = ∇ f . (5) 

hat is to say, the variance reduced gradient is equivalent to the

ull gradient at every iteration in expectation. It is worth noting

hat ∇ ̃

 f is a stale full gradient, which is updated at the start of an

poch and kept fixed during the iterations in an epoch. Therefore,

he variance reduced gradient reduces the stochastic noise signif-

cantly, but leads to less computational cost. Extensive empirical

tudies show that the variance reduced gradient leads to the com-

arable computational cost of SGD, but obtains the equivalent con-

ergence performance of gradient descent. 

. System implementation 

In the section, we present the details of the system implemen-

ation including the algorithm and the distributed mechanism. 

.1. Overview 

Our distributed and asynchronous SGD denoted by DisSVRG is

resented in Algorithm 1 . DisSVRG is organized by the epochs of it-

rations (the outer for loop at Line 2). In every epoch, the instances

re picked randomly (the inner for loop at Line 6), and the up-

ate rule of the parameters (Lines 8 and 9) uses a variance reduced

radient. DisSVRG is launched by the servers, and all the workers

ill be informed by the message passing. Once a worker receives

he message from a server, it pulls a copy of the global param-

ters from a server, and begins conducting the calculations dur-

ng the epoch. The random sampling strategy is conducted by the

orkers. When a worker randomly samples an instance from the

raining data, it computes the variance reduced gradient (Line 8),

nd updates the local parameters with the local gradient (Line 9).

hen the local parameters have been updated, the newly learned

arameters will be sent to a server. The inter-node communica-

ion is conducted by the asynchronous communication protocol,



30 Y. Ming et al. / Neurocomputing 281 (2018) 27–36 

Fig. 1. Illustration of data parallelism and parameter server topology. 

Algorithm 1 DisSVRG. 

1: Initialize ˜ ω 

0 . \\ Pull the global parameters by all workers from 

the servers. 

2: for s = 1 , 2 , . . . do \\ Asynchronously update the parameters by 

all workers. 

3: ˜ ω = ˜ ω 

s −1 . 

4: ˜ f ( ̃  ω ) = 

1 
n 

n ∑ 

i =1 

∇ f i ( ̃  ω ) . 

5: ω 0 = ˜ ω . 

6: for t = 1 , 2 , . . . , m do 

7: randomly sample i t ∈ { 0 , 1 , 2 , . . . , m } . 
8: v t = ∇ f i t (ω t−1 ) − ∇ f i t ( ̃  ω ) + 

˜ f ( ̃  ω ) . \\ Variance reduced 

gradient. 

9: ω t = ω t−1 − ηv t . \\ Update the parameters with variance 

reduction gradient. 

10: ˜ ω 

s = ω m 

. \\ Push the newly learned parameters to the 

servers, and aggregate them with the global parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

 

i  

f  

o  

b  

l

A

 

 

 

 

a  

m  

t  

e  

d  

e  

t  

p  

s  

t

 

r  

t  

n  

t  

t

 

s  

S  

m  

o  

i  

t  

d

 

c  

d  
i.e., SSP. The server receives these learned parameters and aggre-

gates them. The aggregated parameters are the latest global pa-

rameters which will be sent to workers for the next iteration. The

details of communication across nodes and aggregation of param-

eters will be demonstrated in Section 4 . 

4.2. Distributed implementation 

DisSVRG is designed for the distributed memory systems where

the nodes can be categorized into workers and servers. Every

worker caches a copy of the parameters which is called the local

parameters ; while all the servers maintain one copy of the param-

eters which are called the global parameters . The global parameters

will be pulled by a worker and be used as the initial parameters

for an iteration. Meanwhile, such initial parameters will replace the

stale local parameters on the worker and become its new local pa-

rameters. 

Server: The servers control the iterations by using the asyn-

chronous communication protocol, i.e., SSP. Since the runtime en-

vironment of nodes in a cluster varies a lot, the time overhead

of an epoch for different workers varies. Therefore, there are fast

and slow workers which conduct an epoch fast and slow respec-

tively. It is worth noting that DisSVRG may not converge if all the

workers update parameters in a fully asynchronous way. There-

fore, we set a delay bound, i.e., τ . The delay τ is used to syn-

chronize all the workers. For instance, when the fastest worker fin-

ishes the t th iteration, and the slowest worker does not finish the

(t − τ ) th iteration, the fastest worker will be forced to stop and

wait for the slowest one. In specific, the fastest worker cannot pull

a copy of the global parameters from the servers, and thus has to
ait for the slowest worker. Until the slowest worker finishes the

(t − τ ) th iteration, the fastest worker will re-start to conduct the

terations. When a server receives the newly learned parameters

rom a worker, it will aggregate them with the global parameters

n the server. After that, the latest parameters on the server will

e pulled by the worker for the next iteration. The details are il-

ustrated in Algorithm 2 . 

lgorithm 2 Server. 

1: Initialize ˜ ω 

0 . 

2: while true do 

3: if receive a pull request from the worker p. then 

4: e p = p.epoch . 

5: if all the workers have finished (e p − τ ) th epoch. then 

6: send a copy of the global parameters to the worker p.

7: if receive a push request from the worker p. then 

8: receive the newly learned parameters from the worker p.

9: aggregate the newly learned parameters with the global

parameters on the server. 

Worker: Workers in a cluster conduct machine learning tasks in

synchronous way. They pull the parameters from the servers by

essage passing. If a copy of the global parameters is pulled to

he workers, those workers begin iterative calculations. During an

poch, workers first randomly pick an instance from the training

ata, then use the instance to compute the gradient. All the work-

rs are independent with peers when conducting iterative calcula-

ions. When an epoch is finished, a worker has learned the new

arameters, and will send those newly learned parameters to a

erver. It is the servers that control when to synchronize among

he workers. 

Aggregation: When the workers push their newly learned pa-

ameters to the servers, those parameters will be aggregated with

he global parameters on the servers. The average between the

ewly learned parameters and the global parameters will be iden-

ified as the latest global parameters, and will wait to be pushed

o all the workers for the next iteration. 

Communication: The communication usually exists between a

erver and a worker. There is no communication among servers.

pecifically, the parameters are divided uniformly and stored on

ultiple servers. Thus, if a worker needs to pull the parameters

r to push the updates, it will communicate with the correspond-

ng servers. Since every server maintains a part of parameters, and

here are no shared parameters between different servers, servers

o not need to communicate with each other. 

Update rule: As illustrated in Algorithm 3 , DisSVRG is signifi-

antly different from the standard SGD because of the variance re-

uction technique. In the standard SGD, the update rule is shown



Y. Ming et al. / Neurocomputing 281 (2018) 27–36 31 

Algorithm 3 Worker. 

1: while true do 

2: send a pull request to a server. 

3: while true do 

4: if receive a copy of the global parameters from the 

server. then 

5: cache it as the new local parameters, i.e., ˜ ω . 

6: ∇ ̃

 f ( ̃  ω ) = 

1 
n 

n ∑ 

i =1 

∇ f i ( ̃  ω ) . 

7: for t = 0 , 1 , 2 , . . . , m do 

8: randomly sample a non-negative number i with 

i ∈ { 0 , 1 , 2 , . . . , n } . 
9: v t = ∇ f i t (ω t−1 ) − ∇ f i t ( ̃  ω ) + ∇ ̃

 f ( ̃  ω ) . 

10: ω t = ω t−1 − ηv t . 
11: send ω m 

to a server. 

a

v  

 

v  

a  

e  

t

E  

a

E  

T

E

I  

U  

w  

f  

c

5

 

a

5

 

l  

t  

s  

b  

i

 

t

η  

T  

s  

r  

e  

o  

F  

t  

c  

Fig. 2. The learning rate with the acceleration factor makes DisSVRG converge 

faster significantly. 

t  

t  

c  

i  

t  

t  

a

 

d  

d  

t  

r  

S  

t  

i  

l  

b  

a  

c

5

 

r  

r  

A  

F  

m  

w  

D  

l  

f  

c  

A  

f  

r  

t  

b  

w  

S  

t  

e  

s  

T  

s

s follows: 

 t = ∇ f i t (ω t−1 ) (6)

v t in the standard SGD is not the global gradient, which leads to

ariance, and slows the convergence of the loss function unavoid-

bly. Instead, the variance reduction technique is used in DisSVRG

ffectively reduce the variance [10] . Considering the i th round of

he iterations, since i t is randomly picked, it holds that 

 ∇ f i t (ω t−1 ) = ∇ f (ω t−1 ) , (7)

nd 

 (−∇ f i t ( ̃  ω ) + ∇ ̃

 f ( ̃  ω )) = −∇ ̃

 f ( ̃  ω ) + ∇ ̃

 f ( ̃  ω ) = 0 . (8)

herefore, 

 (νt ) = E (∇ f i t (ω t−1 ) − ∇ f i t ( ̃  ω ) + 

˜ f (ω)) = E (∇ f i t (ω t−1 )) 

= 

1 

n 

∇ f (ω t−1 ) . (9) 

t is obvious that the variance of DisSVRG is reduced as expected.

nlike PetuumSGD and DownpourSGD, DisSVRG can converge fast

ithout decaying the learning rate during the iterations. Benefiting

rom the variance reduction technique, DisSVRG can converge at a

onstant rate. 

. Optimization of DisSVRG 

In the section, we optimize the proposed method DisSVRG by

dopting an adaptive learning rate and sampling strategy. 

.1. Learning rate with an acceleration factor 

Generally, variance reduction technique accelerates machine

earning algorithms by using a constant learning rate. Even though

he constant learning rate performs well for L -smooth and γ -

trongly convex objection function, some intrinsic properties can

e exploited to accelerate the convergence of the machine learn-

ng algorithms. 

We introduce an acceleration factor σ with σ = ‖ ∇ f i (ω) ‖ to

he learning rate of DisSVRG. That is, 

= η0 + σ, σ = ‖ ∇ f i (ω) ‖ . (10)

he learning rate of DisSVRG contains two ingredients: the con-

tant and the acceleration factor. The constant part of the learning

ate gets the parameters out of the local optimum; while the accel-

ration factor accelerates the convergence of DisSVRG. This setting

f the acceleration factor is reasonable for the following reasons.

irst, the acceleration factor will become large when the parame-

ers are far from the optimum. If so, DisSVRG will converge fast ac-

ordingly. Second, the acceleration factor will not become so large
hat DisSVRG do not converge. Considering that the convex func-

ion f i in the machine learning model is L -smooth, ∇f i will not be

hanged out of a range for an iteration. That is, ‖∇f i ‖ < C . Here, C

s a non-negative constant. Third, when the parameters are close

o the global optimum, the acceleration factor σ will become close

o zero. DisSVRG thus almost converges to the global optimum at

 constant rate just like the original design in [10] . 

As illustrated in Fig. 2 , we use the acceleration factor to con-

uct the linear regression tasks. Here, the evaluation test is con-

ucted on a node instead of a cluster. The dataset is YearPredic-

ionMSD which is the largest dataset we can find to conduct linear

egression tasks. Other settings of the evaluation are presented in

ection 7 . We can get two important observations from Fig. 2 . First,

he learning rate with an acceleration factor makes the underly-

ng machine learning algorithm converge faster than the constant

earning rate without the acceleration factor. Second, the benefits

ecome significant with a small basic learning rate. Shortly, the

cceleration factor gives rise to obvious benefits to accelerate the

onvergence of a machine learning algorithm. 

.2. Adaptive sampling strategy 

Since DisSVRG needs the sampling strategy to update the pa-

ameters during an epoch, it is important to identify how many

andom updates in an epoch are appropriate. As illustrated in

lgorithm 1 , m represents the number of updates for an epoch.

irst, m cannot be given an extremely large number, which takes

uch time to update the local parameters during an epoch on a

orker. Second, m cannot be set a small value straightly. If so,

isSVRG has to conduct many epochs to reduce the value of the

oss function. Considering that the average gradient of the loss

unction is needed to conduct an epoch, a small m means much

omputation of the average gradients, which is time-consuming.

dditionally, it is worth noting that the workers in a cluster per-

orm asynchronously due to the diversity of the runtime envi-

onment or the hardware in the heterogenous cluster. Although

he asynchronous communication protocol, i.e., SSP, allows a delay

ound to relax the synchronization among the workers, those fast

orkers have to wait for the slow peers when the delay is met.

uch wait time impairs the convergence of DisSVRG. An approach

o reduce the underlying wait time is to adjust the sampling strat-

gy dynamically. Intuitively, the fast workers in the cluster should

ample more instances during an epoch than the slow workers.

hat is, m in the fast workers should be larger than that in the

low workers. 



32 Y. Ming et al. / Neurocomputing 281 (2018) 27–36 

Fig. 3. A large m leads to a fast convergence for DisSVRG, and reduces much wait time during iterations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e  

i  

c  

t  

D  

w  

t

 

e  

s  

o  

i  

t  

l  

i  

t  

v  

p  

r  

w  

p  

f  

D  

v  

D

 

b  

d  

τ  

f  

i  

p  

g  

l  

r  

t  

s  

c  

s  

w  

c  

l  

a  

m  

t  
We adopt an adaptive dynamic sampling strategy which dy-

namically adjust m . When an epoch is completed, the newly

learned local parameters will be pushed to a server. The server

will check the epochs of the worker. If the worker is too fast, it

needs to wait for other slow peers. The fast workers will adjust

m to be a large value, i.e., m + δ. Here, δ is a non-negative in-

teger with δ = 0 . 05 m in DisSVRG. By using this adaptive strategy,

the fast workers will sample more instances during an epoch, thus

spend more time on computing the updates of parameters than

the slow workers. The slow workers have chance to catch up with

the fast workers. Therefore, the wait time is reduced as a result.

This adaptive sampling strategy has many benefits. The most im-

portant benefit is that the fast workers reduce the wait time, and

use it to converge DisSVRG. We conduct an evaluation test on a

node by varying the value of m . Here, the dataset is still YearPre-

dictionMSD , and the learning rate, i.e., η is set to be a constant

with η = 10 −5 . As illustrated in Fig. 3 (a), it is obvious that a large

m brings a fast convergence of the objective function. Therefore,

a large m benefits to decrease the value of the loss function. Ad-

ditionally, the wait time is compared in a cluster which consists

of 5 nodes. As shown in Fig. 3 (b), the average wait time has been

evaluated by varying m . Here, the delay is set to be 0. It is obvi-

ous that the adaptive sampling strategy decreases the average wait

time during iterations, and thus spend much time to accelerate the

convergence of DisSVRG in reverse. 

6. Discussion 

The machine learning tasks such as deep learning are generally

fed with an extremely large volume of training data. However, con-

ventional serial versions of SGD cannot handle a huge training data

on a single node within the available time. Although some dis-

tributed machine learning systems such as Petuum [9] and DMTK

[27] have been designed to solve this problem, those variants of

SGD have their inner weakness, namely the variance. Such those

distributed machine learning systems thus decrease the learning

rate to reduce the variance, which leads to slow convergence of

SGD. We do not aim to propose another a general platform for dis-

tributed machine learning algorithms, but focus on the optimiza-

tion of SGD in a distributed system. Our implementation of the

distributed SGD, i.e., DisSVRG, adopts the variance reduction tech-

nique to reduce the variance. Such variance reduction technique is

the most difference between DisSVRG and PetummSGD. Although

PetuumSGD adopts a decaying learning rate, it slows to converge

the loss function. DisSVRG has been accelerated with two ingredi-
nts: the constant and the acceleration factor. The constant factor

s effective to get DisSVRG out of the local optimum, and keeps

onverge at a constant rate. The acceleration factor will accelerate

he convergence of the machine learning algorithm. Even though

isSVRG adopts the same asynchronous communication protocol

ith PetuumSGD, it converges faster than PetuumSGD by adopting

he powerful variance reduction technique. 

DisSVRG improves SVRG with at least three aspects. First, we

xtend the serial SVRG to an asynchronous and distributed ver-

ion by using the asynchronous consistency protocol, i.e., SSP. Sec-

nd, comparing with the constant learning rate in SVRG, the learn-

ng rate in our SGD contains an acceleration factor which exploits

he potential benefits of the loss function, and makes the machine

earning algorithms converge fast. Third, SVRG needs to sample m

nstances randomly to update parameters. SVRG sets m multiple

imes of the size of training data, which is not practical for a large

olume of training data. Instead, DisSVRG adopts an adaptive sam-

ling strategy which adjusts the value of m by the runtime envi-

onment of the worker dynamically. Specifically, the fast workers

ill sample more instances during the next epoch than the slow

eers. The slow workers thus have chance to catch up with the

ast workers. Thus, wait time is reduced significantly, which makes

isSVRG converge fast in the end. In a nutshell, considering the di-

ersity of the runtime environment and the hardware in a cluster,

isSVRG is suitable to the practical scenarios. 

Additionally, comparing with the version of SGD in [14] denoted

y SSGD , our SGD adopts a more natural way to implement the

istributed SGD with the variance reduction. SSGD implements the

-delay bound inconsistent protocol within an epoch, but keeps

ully consistent protocol among different workers. Therefore, SGD

n [14] has at least two weaknesses. First, the fully consistency

rotocol for the workers is not suitable to the iterative conver-

ence machine learning tasks [25, 28, 29] . Since the straggler prob-

em usually exists among workers due to the variety of the system

untime environment or the hardware in the heterogenous clus-

er, the fast workers in [14] have to wait for the slow workers, and

tart the next iteration in a synchronous way. Considering that ma-

hine learning algorithms are iteratively convergent, the fully con-

istency protocol wastes too much time. Second, SSGD is coupled

ith specific hardware settings of clusters, which is less practi-

al and natural. SSGD uses m learning threads to perform machine

earning tasks where m is also the number of instances sampled in

n epoch. That is, if the sampling strategy in SSGD adopts a large

 , SSGD should be run in a cluster which can support m learning

hreads at a same time. Meanwhile, m in SSGD is O ( n ) where n



Y. Ming et al. / Neurocomputing 281 (2018) 27–36 33 

r  

o  

i  

fl  

t  

m  

r  

e

7

 

u  

d

m

H  

t  

p  

m

m

i  

2

 

T  

c  

p  

X  

w  

T  

t  

l  

e  

t

 

 

 

 

 

 

 

 

 

7

 

a  

t  

m  

I  

f  

d  

t  

t  

t  

a  

t  

a  

a  

t  

w  

t  

w  

i

7

 

m  

t  

b  

t  

t  

g  

p  

t  

c  

t  

o  

e  

d  

f  

r

r  

a  

T  

k

7

 

o  

t  

m  

w  

c  

w  

t  

s  

b  

a  

o  

d  

w  

w  

e  

t  
epresents the size of the training data. Considering the huge size

f training data, m is really large in SSGD, which is not practical

n a real cluster. In fact, a practical SGD should be designed to be

exible to work in different clusters by merely adjusting its set-

ings. Instead, m in DisSVRG is identified by the adaptive sampling

echanism, which is flexible to be adjusted in the runtime envi-

onment. This design of the sampling strategy shields the differ-

nce of a specific cluster, which is more general and natural. 

. Performance evaluation 

In this section, we evaluate the performance of DisSVRG by

sing a regression problem and a classification problem on two

atasets. 

First we consider a regression problem: 

in 

1 

2 n 

(
1 

1 + e −ω T x i 
− y i 

)2 

. (11) 

ere, n is the size of training data. The dataset named YearPredic-

ionMSD 

1 is the biggest dataset on the LibSVM for the regression

roblem. It contains 463 , 715 samples, and each sample has 90 di-

ensions. 

Additionally, we consider a classification problem: 

in −1 

n 

n ∑ 

i =1 

(
y i log 

1 

1 + e −ωx i 
+ (1 − y i ) log 

(
1 − 1 

1 + e −ωx i 

))
. 

(12) 

Similarly, n is the size of training data. The datasets named dna 2 

s used for the evaluation tests. Every sample in the dataset has

00 dimensions. The number of samples in the dna is 50,000,000. 

We conduct the evaluation test on the HPC cluster of the

ianhe-1 supercomputer which is located in the National Super-

omputing Center in Changsha. We have a maximum of 128 com-

uting nodes, and each such node is equipped with two Intel Xeon

5670 CPUs and one Nvidia M2050 GPU. Each a CPU has 6 cores;

hile GPUs are not used in the evaluation test. m is set to be 10 0 0.

he learning rate η is set to 10 −6 . For the fairness of the evalua-

ion test, we use the third-party open source distributed machine

earning system denoted by DMTK [27] to conduct the performance

valuation. All the compared algorithms are implemented based on

he DMTK. 

The following algorithms will be used for comparison. 

• PetuumSGD: The distributed version of SGD is implemented by

using the asynchronous communication protocol, i.e., SSP [9] .

The learning rate in PetuumSGD is decayed with a fixed factor

0.95 at the end of an epoch. 

• SSGD: It is the state-of-the-art distributed version of SGD,

which adopts the variance reduction technique [14] . The update

rule in the SSGD has a variable θ which is used to update the

parameters asynchronously. The details of SSGD can be referred

in [14] . Here, we set θ = 0 . 5 . 

• DisSVRG-tricks: DisSVRG is evaluated with all the optimization

tricks. 

• DisSVRG-without-tricks: DisSVRG is evaluated without any an

optimization tricks. 

.1. Convergence 

As illustrated in Fig. 4 , the convergence performance of the

lgorithms has been evaluated. The delay is set to be 50 when
1 http://www.csie.ntu.edu.tw/ ∼cjlin/libsvmtools/datasets/ . 
2 ftp://largescale.ml.tu-berlin.de/largescale . 

t  

s  

I  

d

hose machine learning algorithms adopt the asynchronous com-

unication protocol. All the datasets are handled on 32 workers.

t is obvious that DisSVRG with the optimization tricks outper-

orms other algorithms for all the datasets. Even though DisSVRG

oes not use any an optimization trick, it always performs better

han PetuumSGD, and gains a better performance than SSGD for

he dna dataset. In specific, in order to decrease the loss function

o 0.1, DisSVRG with all the optimization tricks spends one forth

nd one third time of the PetuumSGD for the datasets YearPredic-

ionMSD and dna , respectively. The main reason is that DisSVRG

dopts asynchronous communication protocol as well as the vari-

nce reduction technique to update the parameters, thus better

han any of the existing algorithms. Additionally, the learning rate

ith an acceleration factor speeds up the convergence. Meanwhile,

he adaptive sampling strategy significantly reduces the underlying

ait time which is used to accelerate the convergence of DisSVRG

n reverse. 

.2. Speedup 

As illustrated in Fig. 5 , we compare the convergence perfor-

ance of DisSVRG by varying the number of workers in a clus-

er. It is obvious that DisSVRG converges fast with a large num-

er of workers. During the iterations, the more workers are used

o update the local parameters, the more newly learned parame-

ers will be aggregated with the global parameters. After that, the

lobal parameters which contains the newly learned updates of

arameters will be shared with other workers for the next itera-

ion, thus accelerating the convergence of other workers. In spe-

ific, DisSVRG obtains approximately linear speedup when varying

he number of workers. For instance, DisSVRG gains 19 × speedup

n the dataset YearPredictionMSD when using 32 workers. DisSVRG

ven keeps the linear speedup when using 128 workers for the

ataset dna . The approximately linear speedup mainly benefits

rom the asynchronous communication protocol and the variance

eduction technique. The asynchronous communication protocol 

elaxes the bound of the synchronization among workers, which

lleviates the straggler problem, and thus decreases the wait time.

he variance reduction technique reduces the variance of SGD, and

eeps DisSVRG converging at a constant rate. 

.3. Wait time 

As shown in Fig. 6 , we evaluate the average time consumption

f DisSVRG by varying the value of the delay τ . It is obvious when

he delay τ is small, the average wait time is large. A small delay

eans a tight bound among workers, which usually leads to the

ait time for the fast workers due to the asynchronous communi-

ation protocol. For example, when the delay is set to be 0, all the

orkers should be synchronized for each iteration, thus waiting

he longest time. It is worth noting that the wait time decreases

harply when the delay becomes large. We conclude that a relax

ound is effective to reduce the average wait time. Meanwhile, the

verage computing time will increase slightly with a relax bound

f the delay. Although the fast workers have more freedom to con-

uct the iterations with the relax bound of the delay, the slow

orkers cannot obtain the newly learned parameters from the fast

orkers within the large delay. The slow workers thus cannot ben-

fit from the fast peers. In a nutshell, the delay should not be iden-

ified either too small or too large. It is a tradeoff between the wait

ime and the computing time for the workers. Generally, the delay

hould be set to minimize the total time consumption of DisSVRG.

n our evaluation tests, the delay τ should be set to be 200 for the

ataset YearPredictionMSD , and 50 for the dataset dna . 

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
ftp://largescale.ml.tu-berlin.de/largescale


34 Y. Ming et al. / Neurocomputing 281 (2018) 27–36 

Fig. 4. The performance of the convergence is compared by using 32 computing nodes. 

Fig. 5. DisSVRG obtains almost linear speedup when varying the number of workers. 

Fig. 6. The time consumption is compared by varying the delay τ for 128 workers. 



Y. Ming et al. / Neurocomputing 281 (2018) 27–36 35 

8

 

l  

t  

c  

p  

b  

i  

w  

T  

c  

s  

c  

g

A

 

f  

f  

w  

P  

E  

t  

t  

l  

t  

s  

(  

a

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

 

[

 

[  

[  

 

 

[  

 

[  

 

 

 

[  

 

[  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. Conclusion 

Distributed SGD is an effective way to solve the large scale

earning problems. In this paper, we propose a version of dis-

ributed SGD named DisSVRG with combing the asynchronous

ommunication protocol and the variance reduction technique. Ex-

loiting the properties of the loss function, DisSVRG is optimized

y using a learning rate with the acceleration factor. Additionally,

n order to reduce the wait time caused by the straggler problem,

e propose an adaptive sampling strategy during the iterations.

he adaptive sampling strategy gives the slow workers a chance to

atch up with the fast peers during iterations, thus alleviating the

traggler problem. Extensive empirical studies show that DisSVRG

onverges faster than the state-of-the-art version of SGD, and can

ain approximately linear speedup in a cluster. 

cknowledgment 

We thank the National Supercomputing Center in Changsha

or providing Tianhe-1 supercomputer as our experiment plat-

orm. We thank for the help provided by Prof. Xinzhong Zhu

ho is the president of Cixing Research Institute and the Chair

rofessor of the college of Mathematics, Physics and Information

ngineering, Zhejiang Normal University, China. Additionally, we

hank Cixing intelligent manufacturing research institute, Cixing

extile automation research institute, Ningbo Cixing corporation

imited and Ningbo Cixing robotics company limited because of

heir financial support and application scenarios. This work was

upported by the National Natural Science Foundation of China

Project Nos. 61672528 , 61170287 , 61232016 , 61303189 , 61403405

nd 31501073 ). 

eferences 

[1] A . Coates , A .Y. Ng , H. Lee , An analysis of single-layer networks in unsupervised
feature learning, J. Mach. Learn. Res. 15 (2011) 215–223 . 

[2] G.E. Dahl , D. Yu , L. Deng , A. Acero , Context-dependent pre-trained deep neural
networks for large-vocabulary speech recognition, Trans. Audio Speech Lang.

Process. 20 (1) (2012) 30–42 . 

[3] R. Collobert , J. Weston , A unified architecture for natural language processing:
deep neural networks with multitask learning, in: Proceedings of the ACM In-

ternational Conference on Machine Learning, 2008, pp. 160–167 . 
[4] D. Vidaurre , C. Bielza , P. Larrañaga , A survey of L1 regression, Int. Stat. Rev. 81

(3) (2013) 361–387 . 
[5] G. Gnecco , M. Gori , S. Melacci , M. Sanguineti , Learning with mixed hard/soft

pointwise constraints., IEEE Trans. Neural Netw. Learn. Syst. 26 (9) (2015) 2019 .

[6] F. Cucker , S. Smale , On the mathematical foundations of learning, Bull. Am.
Math. Soc. 39 (1) (2002) 332 . 

[7] J. Dean , G. Corrado , R. Monga , K. Chen , M. Devin , Q.V. Le , M.Z. Mao , M. Ran-
zato , A.W. Senior , P.A. Tucker , K. Yang , A.Y. Ng , Large scale distributed deep

networks, in: Proceedings of the Neural Information Processing Systems, 2012,
pp. 1232–1240 . 

[8] M. Li , D.G. Andersen , J.W. Park , A.J. Smola , A. Ahmed , V. Josifovski , J. Long ,

E.J. Shekita , B.-Y. Su , Scaling distributed machine learning with the parameter
server, in: Proceedings of the UENSIX on Operating Systems Design and Imple-

mentation, 2014, pp. 583–598 . 
[9] E.P. Xing , Q. Ho , W. Dai , J.K. Kim , J. Wei , S. Lee , X. Zheng , P. Xie , A. Kumar ,

Y. Yu , Petuum: a new platform for distributed machine learning on big data,
Trans. Big Data 1 (2) (2015) 49–67 . 

[10] R. Johnson , T. Zhang , Accelerating stochastic gradient descent using predictive

variance reduction, in: Proceedings of the Advances in Neural Information Pro-
cessing Systems, 2013, pp. 315–323 . 

[11] S.-Y. Zhao , W.-J. Li , Fast asynchronous parallel stochastic gradient descent: a
lock-free approach with convergence guarantee, in: Proceedings of the Thirti-

eth AAAI Conference on Artificial Intelligence, 2016, pp. 2379–2385 . 
[12] S.J. Reddi , A. Hefny , S. Sra , B. Poczos , A.J. Smola , On variance reduction in

stochastic gradient descent and its asynchronous variants, in: Proceedings of
the Advances in Neural Information Processing Systems, 2015, pp. 2647–2655 . 

[13] R.L. Cavalcante , I. Yamada , B. Mulgrew , An adaptive projected subgradient ap-

proach to learning in diffusion networks, Trans. Signal Process. 57 (7) (2009)
2762–2774 . 

[14] R. Zhang , S. Zheng , J.T. Kwok , Asynchronous distributed semi-stochastic gradi-
ent optimization, in: Proceedings of the Thirtieth AAAI Conference on Artificial

Intelligence, AAAI Press, 2016, pp. 2323–2329 . 
[15] A. Harlap , H. Cui , W. Dai , J. Wei , G.R. Ganger , P.B. Gibbons , G.A. Gibson ,
E.P. Xing , Addressing the straggler problem for iterative convergent parallel ML,

in: Proceedings of the the Seventh ACM Symposium, ACM Press, New York,
New York, USA, 2016, pp. 98–111 . 

[16] M. Li , T. Zhang , Y. Chen , A.J. Smola , Efficient mini-batch training for stochastic
optimization, in: Proceedings of the the Twentieth ACM SIGKDD International

Conference, ACM Press, New York, New York, USA, 2014, pp. 661–670 . 
[17] H. Mania, X. Pan, D. Papailiopoulos, B. Recht, K. Ramchandran, M.I. Jordan, Per-

turbed iterate analysis for asynchronous stochastic optimization, arXiv: 1507.

06970 (2015). 
[18] X. Lian , Y. Huang , Y. Li , J. Liu , Asynchronous parallel stochastic gradient for

nonconvex optimization, in: Proceedings of the Advances in Neural Informa-
tion Processing Systems, 2015, pp. 2719–2727 . 

[19] X. Pan , M. Lam , S. Tu , D. Papailiopoulos , C. Zhang , M.I. Jordan , K. Ramchandran ,
C. Re , B. Benjamin , Cyclades: Conflict-free asynchronous machine learning, in:

Advances in Neural Information Processing Systems, 2016, pp. 2568–2576 . 

20] A. Defazio , F. Bach , S. Lacoste-Julien , Saga: a fast incremental gradient method
with support for non-strongly convex composite objectives, in: Advances in

Neural Information Processing Systems, Montréal, Canda, 2014, pp. 1646–1654 .
[21] J. Kone ̌cn ̀y , P. Richtárik , Semi-stochastic gradient descent methods, in: Frontiers

in Applied Mathematics and Statistics, vol. 3, Frontiers, 2017, p. 9 . 
22] Z. Allen-Zhu , Y. Yuan , Improved SVRG for non-strongly-convex or sum-of-non–

convex objectives, in: Proceedings of the International Conference on Machine

Learning, New York, USA, 2016 . 
23] L. Xiao , T. Zhang , A proximal stochastic gradient method with progressive vari-

ance reduction, SIAM J. Optim. 24 (4) (2014) 2057–2075 . 
24] Q. Ho , J. Cipar , H. Cui , S. Lee , J.K. Kim , P.B. Gibbons , G.A. Gibson , G. Ganger ,

E.P. Xing , More effective distributed ML via a stale synchronous parallel param-
eter server, in: Proceedings of the Advances in Neural Information Processing

Systems, 2013, pp. 1223–1231 . 

25] E.P. Xing , Q. Ho , W. Dai , J.K. Kim , J. Wei , S. Lee , X. Zheng , P. Xie , A. Kumar ,
Y. Yu , PETUUM: a new platform for distributed machine learning on big data,

IEEE Trans. Big Data 1 (2) (2015) 49–67 . 
26] W. Dai , A. Kumar , J. Wei , Q. Ho , G. Gibson , E.P. Xing , High-performance dis-

tributed ML at scale through parameter server consistency models, in: Pro-
ceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015 . 

[27] J. Yuan , F. Gao , Q. Ho , W. Dai , J. Wei , X. Zheng , E.P. Xing , T.-Y. Liu , W.-Y. Ma ,

Lightlda: big topic models on modest computer clusters, in: Proceedings of
the WWW, 2015, pp. 1351–1361 . 

28] W. Dai , A. Kumar , J. Wei , Q. Ho , G.A. Gibson , E.P. Xing , High-performance dis-
tributed ML at scale through parameter server consistency models, in: Pro-

ceedings of the AAAI, 2015, pp. 79–87 . 
29] M. Li , D.G. Andersen , A.J. Smola , K. Yu , Communication efficient distributed

machine learning with the parameter server, in: Proceedings of the Advances

in Neural Information Processing Systems, 2014, pp. 19–27 . 

Yuewei Ming received his M.S. degree from the National

University of Defense Technology in 2013 and a B.S. de-
gree from Sichuan University in 2011. He is currently

a Ph.D. candidate at the National University of Defense
Technology. His research interests include distributed and

parallel optimization and scalable machine learning sys-
tems. 

Yawei Zhao received his M.S. degree from the Na-

tional University of Defense Technology (NUDT), Chang-
sha, China, in 2015. He is currently a Ph.D. candidate at

the National University of Defense Technology. His re-
search interests include asynchronous and parallel opti-

mization and machine learning. 

Chengkun Wu Assistant Professor at the National Univer-
sity of Defense Technology, got his Ph.D. from the Univer-

sity of Manchester. His main research interests include:

high performance computing, data and text mining. 

https://doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0002
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0002
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0002
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0002
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0002
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0003
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0003
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0003
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0006
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0006
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0006
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0007
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0007
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0007
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0007
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0007
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0007
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0007
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0007
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0007
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0007
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0007
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0007
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0007
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0008
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0008
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0008
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0008
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0008
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0008
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0008
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0008
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0008
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0008
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0010
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0010
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0010
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0003a
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0003a
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0003a
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0012
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0012
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0012
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0012
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0003b
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0003b
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0003b
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0003b
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0013
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0013
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0013
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0013
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0013
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0013
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0013
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0013
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0013
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0014
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0014
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0014
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0014
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0014
http://arxiv.org/abs/1507.06970
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0015
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0015
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0015
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0015
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0015
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0016a
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0016a
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0016a
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0016a
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0016a
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0016a
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0016a
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0016a
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0016a
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0016a
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0016
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0016
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0016
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0016
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0016x
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0016x
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0016x
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0017
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0017
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0017
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0018
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0018
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0018
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0020
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0020
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0020
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0020
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0020
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0020
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0020
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0020
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0020
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0020
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0020
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0021
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0021
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0021
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0021
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0021
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0021
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0021
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0022
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0022
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0022
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0022
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0022
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0022
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0022
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0022
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0022
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0022
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0023
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0023
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0023
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0023
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0023
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0023
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0023
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0024
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0024
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0024
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0024
http://refhub.elsevier.com/S0925-2312(17)31803-9/sbref0024


36 Y. Ming et al. / Neurocomputing 281 (2018) 27–36 

 

 

 

 

 

 

 

 

 

 

 

 

Kuan Li received his Ph.D. degree in Computer Science

from the National University of Defense Technology in
2012. He is currently an Assistant Professor in School of

Computer Science, National University of Defense Tech-

nology, China. His research interests include medical im-
age processing, pattern recognition and parallel comput-

ing. 
Jianping Yin received the M.S. degree and the Ph.D. de-

gree in computer science from the National University of
Defense Technology, Changsha, China, in 1986 and 1990,

respectively. He is a Distinguished Professor of Computer

Science with the Dongguan University of Technology. His
research interests involve artificial intelligence, pattern

recognition, algorithm design, and information security. 


	Distributed and asynchronous Stochastic Gradient Descent with variance reduction
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Symbols and notations
	3.2 Parameter server
	3.3 Variance reduced SGD

	4 System implementation
	4.1 Overview
	4.2 Distributed implementation

	5 Optimization of DisSVRG
	5.1 Learning rate with an acceleration factor
	5.2 Adaptive sampling strategy

	6 Discussion
	7 Performance evaluation
	7.1 Convergence
	7.2 Speedup
	7.3 Wait time

	8 Conclusion
	 Acknowledgment
	 References


